Study of Techniques used for Medical Image Segmentation Based on SOM

نویسندگان

  • K. B. Vaishnavee
  • K. Amshakala
چکیده

In image processing, segmentation is an important technique which is based on the homogeneous features utilized to partition the image into various regions. In Medical field MR images are widely used, but due to its noise, intensity in homogeneity, Partial Volume Effect (PVE) through voluntary and involuntary movement of the patients and equipments the segmentation process is highly complex. White Matter (WM), Grey matter (GM) and Cerebrospinal Fluid (CSF) are the three main tissue segmentation of MR brain image segmentation. The accurate segmentation of brain tissues facilitates the estimation of tissue volume, tumor detection and estimation of volumes of tumor, which is done by making the image smoother and thus easier to measure. In addition this technique facilitates to estimate the Region of Interest (ROI) in an image. Segmentation is mainly classified as supervised and unsupervised and based on these two there have been various techniques developed for the image segmentation. In medical field, the supervised has less demand as it requires prior knowledge from the external entity. On the other hand, unsupervised segmentation provides more accurate result where it does not need any prior knowledge at any time. The well known Self Organizing Map (SOM) segmentation technique is a type of unsupervised clustering technique utilized to make image quite simple and yields significant accurate segmentation results for the MRI images. This survey paper addresses the various existing methodologies for segmentation of MRI images and presents the issues and advantages related to those approaches.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Improving Brain Magnetic Resonance Image (MRI) Segmentation via a Novel Algorithm based on Genetic and Regional Growth

Background: Regarding the importance of right diagnosis in medical applications, various methods have been exploited for processing medical images solar. The method of segmentation is used to analyze anal to miscall structures in medical imaging.Objective: This study describes a new method for brain Magnetic Resonance Image (MRI) segmentation via a novel algorithm based on genetic and regiona...

متن کامل

Automated Tumor Segmentation Based on Hidden Markov Classifier using Singular Value Decomposition Feature Extraction in Brain MR images

ntroduction: Diagnosing brain tumor is not always easy for doctors, and existence of an assistant that                                                      facilitates the interpretation process is an asset in the clinic. Computer vision techniques are devised to aid the clinic in detecting tumors based on a database of tumor c...

متن کامل

A Method for Body Fat Composition Analysis in Abdominal Magnetic Resonance Images Via Self-Organizing Map Neural Network

Introduction: The present study aimed to suggest an unsupervised method for the segmentation of visceral adipose tissue (VAT) and subcutaneous adipose tissue (SAT) in axial magnetic resonance (MR) images of the abdomen. Materials and Methods: A self-organizing map (SOM) neural network was designed to segment the adipose tissue from other tissues in the MR images. The segmentation of SAT and VA...

متن کامل

Extraction and 3D Segmentation of Tumors-Based Unsupervised Clustering Techniques in Medical Images

Introduction The diagnosis and separation of cancerous tumors in medical images require accuracy, experience, and time, and it has always posed itself as a major challenge to the radiologists and physicians. Materials and Methods We Received 290 medical images composed of 120 mammographic images, LJPEG format, scanned in gray-scale with 50 microns size, 110 MRI images including of T1-Wighted, T...

متن کامل

Unsupervised Texture Image Segmentation Using MRFEM Framework

Texture image analysis is one of the most important working realms of image processing in medical sciences and industry. Up to present, different approaches have been proposed for segmentation of texture images. In this paper, we offered unsupervised texture image segmentation based on Markov Random Field (MRF) model. First, we used Gabor filter with different parameters’ (frequency, orientatio...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2014